La Odisea de un Prompt

Anatomia de la Inferencia en un Transformer

Seguiremos el viaje de un simple texto de entrada, desde su origen como palabras hasta su
transformacion final en una prediccion. Este es el flujo de datos que permite a un modelo como
GPT-2 comprender y generar lenguaje, paso a paso.

Hola mundo. Esta es una prueba de tokenizacion real.

Etapa 1: La Traduccion a Nameros (Tokenizacion)

Todo comienza convirtiendo el texto en una secuencia de IDs numeéricos, o 'tokens'. El modelo no ve
palabras, sino una lista de identificadores unicos extraidos de su vocabulario.

CcODIGO RESULTADO

texto = "Hola mundo. Esta es una prueba de Hola mundo. Esta es una prueba de tokenizacion real.
tokenizacion real."

tokens = tokenizer(texto, return_tensors="pt") 108 [{[Co M= 1= || &3y Ena) [RARED ajhe SiTRED maqﬁn real

Salida: 20 tDkEﬂS : ' ' ' '

tensor([[39, 5768, 27943, ?a 193 223&2 ﬁa 1553 555
556, 8451, 20139, 1634, 78, 39, 57088, 27943, 78,
198, 22362]11)

Shape: torch.Size([1, 20])

Nuestra frase ahora es una secuencia de 20 numeros, la materia prima para el siguiente paso.

& NotebooklLM

Etapa 2: Asignando Identidad y Contexto Posicional

Cada token ID y cada posicion en la secuencia se utilizan para consultar dos 'bibliotecas' de vectores
pre-entrenados (embeddings). La suma de ambos crea el vector inicial de cada token.

Tabla de Embedding de Tokens Tabla de Embedding de Posicion
Vector de Token Vector de Posicién
vl v2ows] B, pZips3. .
(Dim: 768) (Dim: 768)
ID de Token: 39 (-) P Posicién: 0
f#

Vector Inicial X_0

Embedding de Token (significado) + Embedding de Posicion (orden) = Embedding Inicial Contextualizado.

El resultado es un tensor que representa nuestra secuencia Shape final: torch.Size([1, 20, 768])
completa. Esta es la forma que mantendra a lo largo de su viaje. # [bateh_size, n_tokens, embedding_dimension]

&1 NotebookLM

El Crisol: Preparando los Sentidos para la Atencion (Q, K, V)

Para que cada token pueda ‘mirar’ a los demas, primero proyectamos su embedding en tres espacios diferentes: Query, Key y
Value. Esto se logra multiplicando el embedding por matrices de pesos (W_Q, W_K, W_V) aprendidas durante el entrenamiento.

- Ww_Q
W\, (768, 768)
>id) Q (20, 768)
y
y 4
Input Tensor “ | W_K
'\ (788, 768)
X (20, 768)) Y T C— K (20, 768)
y:
V 4
.)\ W_V
. (768, 768)
“*~ > 1) V (20, 768)
7
Q Query (Q): ;Qué estoy p Key (K): ;Qué informacién lﬁl Value (V): La informacion que
buscando? relevante tengo para ofrecer? finalmente compartire.

Las matrices de pesos W son fijas después del entrenamiento. Aqui es donde reside gran parte del “‘conocimiento” del modelo.

&1 NotebookLM

Calculando Relevancia: ;A Quién Debo Prestar Atencion?

Usando Query (Q) y Key (K), el modelo calcula una puntuacion de atencion entre cada par de tokens. Esta
puntuacion determina qué tan relevante es un token para otro en el contexto actual.

Token Observado (0 = 19)

1234567 8 91011121314151617181920
1 1
2
3 =
: : 4
Esta fila muestra como :
el token 5 distribuye su » 3 3 a- B
atencion entre todos o 6 L
los demas tokens. 1 ; H
= : et Q@K £
= 9 Puntuaciones de Atencion = snftmax(-
T 10 v d
= i
@ 12
= Donde d), es la dimension de los vectores Key.
ST !
o 14
-
o 15 .
16 P
17 P
18 | i
20 T

El resultado es una matriz de (20, 20)". Cada fila representa la distribucion de atencion de un token a través de

toda la secuencia. La suma de los valores de cada fila es 1.
& NotebookLM

La Atencion en Accion: "Hoy martes llueve"

Veamos un ejemplo simplificado para calcular el nuevo embedding de 'hoy'. Su representacion final
sera una mezcla de los demas tokens, ponderada por las puntuaciones de atencion.

Step 1: Escenario
Queremos recalcular el vector de hoy.
Supongamos que las puntuaciones de atencién de 'hoy' hacia los demas son:
- Hacia 'hoy". 0.2
- Hacia 'martes': 0.7
- Hacia 'llueve': 0.1

Step 2: Vectores V
V["hoy"’ B e (0.3 02 01 0.5]
V["martes" _--_ OG0B0, (5]
V(["llueve" -_ s [(0.7,-01,0.0,0.2]

Step 3: Multiplicacion Ponderada

0.2 *V["hoy"] x 0.06, 0.04, 0.02, 0.10]
0.7 * V["martes"] x i -0.28, 0.42, 0.21, -0.14]
01*V["llueve"] x [0 0.07,-0.01, 0.00, 0.02]

Step 4: Suma Final

S T

Resultado (Embedding Score): [-0.15, 0.45, 0.23, -0.02]

Conclusion Clave
El nuevo vector de 'hoy' ahora esta fuertemente influenciado por ‘martes’ (peso 0.7).
Ha absorbido el contexto. Esto no es magia, es una suma ponderada.

&1 NotebookLM

Integracion y Estabilizacion del Nuevo Contexto

El nuevo embedding contextualizado no reemplaza al original. Se combina y estabiliza a través de dos
mecanismos clave para asegurar un aprendizaje estable a través de las capas.

Fase 1: Residual Connection (Skip Connection)

Skip Con neatidn

Blogue de

» Preserva la informacién original
del token, evitando que se /

pierda en el proceso de m
A

contextualizacion.

s
Embedding —>
Original (X)

Atencioén

Formula: Embedding_Residual = X + Embedding_Score

Embedding
Score

> (+)

Fase 2: Layer Normalization (LayerNorm)

» Re-escala el vector para que tenga

media 0 y varianza 1. Esto estabiilza
las activaciones y acelera el
entrenamiento, preparando el vector
para la siguiente etapa.

calibrator

> —>
Embedding_Residual

-

Embedding_Normalizado

Formula: Embedding_Normalizado =

X - media

Jvarianza + €

&1 NotebookLM

Procesamiento Profundo: La Red Feed-Forward (FFN)

Después de la atencion, cada token pasa individualmente por una red neuronal simple. Este paso
permite al modelo realizar un procesamiento mas complejo sobre la informacion ya contextualizada.

Entrada Dimension: RelLU Dimension:
(dim 768) 768 = 3072 ReLU(x) = max(0, x) Filtered Vector 3072 > 768

Proposito: Crear una # Proposito: Descartar # Proposito: Sintetizar los
representacion mas rica con activaciones no utiles e rasgos relevantes activados
mayor capacidad expresiva. introducir no linealidad. en la capa de expansion.

Nota: Al igual que en la atencion, esta etapa también tiene su propia Residual Connection y Layer Normalization al final.

& NotebookLM

El Ciclo de Refinamiento: El Rol de las Multiples Capas

El proceso completo (Atencion + FFN) constituye un “Bloque Transformer”. Un modelo como GPT-2 apila estos
blogues multiples veces (e.g., 96 veces). La salida de una capa se convierte en la entrada de la siguiente.

Salida de Capa N-1 = Entrada de Capa N

Blogque Transformer
(Atencion + FFN)

Salida de Capa N-1 - Entrada de Capa 3

Bloque Transformer =

(Atencion + FFN)

Blogue Transformer == A
(Atencion + FFN) | __ E
h""‘!-,_‘_ N . - _"I..,.u--"'ﬂ1I
- . Salida de Capa N-1 = Entrada de Capa N
el

Bloque Transformer F
(Atencion + FFN)

\

Ejemplo Conceptual: La Evolucion del Token “hoy”

Tras Capa N-1:

Tras Capa 3:

Tras Capa 1:

Entrada
(Capa 0):

"hoy"” = [contexto completo > alta probabilidad de
consecuencia logistica como llevar paraguas]
(Comprension de alto nivel)

“hoy"” - [dia actual + lluvioso - afecta decision]
(Implicaciones causales)

“hoy"” - [es dia actual, esta relacionado con martes]
(Relaciones basicas)

"hoy" = [vector de significado y posicion]

Cada capa refina la representacion del token, permitiéndole capturar
relaciones cada vez mas complejas y abstractas con el resto de la secuencia.

&1 NotebookLM

El Desenlace: De la Comprension a la Prediccion

Después de pasar por la Ultima capa, tomamos el vector de salida del Gltimo token de nuestra secuencia.
Este vector, que contiene todo el contexto acumulado, se utiliza para predecir el siguiente token.

Transformer Capa de Proyeccion Lineal
 Ciitima Block (

/ (dim 768)

Most probable next token

DT

W

Distribucion de Probabilidad

—————————
—————|
Vector Final del e
Ultimo Token \
(dim 768) (50,257) Softmax

La capa final proyecta el vector de 768 dimensiones a un espacio del tamano del vocabulario. La funcién Softmax convierte

estos valores (logits) en probabilidades, indicando la probabilidad de que cada palabra del vocabulario sea la siguiente.
&1 NotebookLM

El Veredicto Final: Eligiendo el Siguiente Token

El modelo ahora tiene una probabilidad asignada a cada posible token siguiente. Simplemente elige el token con
la probabilidad mas alta (0 muestrea de la distribucion) para generar la continuacion.

Frase de entrada: "Hoy martes llueve, asi que..."

Probabilidades de los Siguientes Tokens

paraguas 0.64 -
llevar 0.18
sacar 0.05
abrigo 0.03
coche| 0.01

El token '‘paraguas’' es seleccionado. Todo el complejo viaje de contextualizacion a través de las capas culmina
en essa esta prediccion, que se basa en los patrones matematicos aprendidos durante el entrenamiento.

&1 NotebookLM

La Odisea Completa: Un Resumen Visual del Viaje

Hola
mundo... } = (39,5708 =2 = oy
X
(1, 20, 768)
Entrada Tokenizacion Embeddings

—3
K —>
—

v E
o ¥

Iv

X N veces
{ i
A
Residual
FFN

((Expand-fiiter)
A

Atencion | (Contract)

-

A
Residual €—

%

Y

—3
Calibrator
.*

LayerNorm

)

Bloque Transformer

(50,257)

Proyeccion
Final

Softmax
lens

Probabilidades

11k

(Softmax)

=, [paraguas]

Distribucién de
Probabilidad

Salida

/A NotebookLM

La Arquitectura del Contexto

Lo que NO es Lo que Sl es
e El modelo no 'piensa’ ni 'entiende’ en el e Un sistema sofisticado de reconocimiento de
sentido humano. patrones matematicos a una escala masiva.
 No accede a una base de datos en tiempo de La aplicacion de relaciones (semanticas,
inferencia. sintacticas, causales) codificadas en pesos

numericos durante el entrenamiento.
e No razona con ldgica, sino que opera sobre
probabilidades. e Una demostracion de como operaciones
vectoriales complejas, repetidas en capas,
pueden simular la comprension del contexto
linguistico.

La 'magia’ no es conciencia, sino una arquitectura computacional absolutamente genial que
asocia 'lluvia' y 'paraguas’' con una alta similitud numérica. Es la matematica del lenguaje.

& NotebooklLM

